Technology News, Micromax, Mobiles Flashing Software, Flash Tool, Pokemon GO Apk, Income Online, Moto G4 Plus, Sony PC, Latest Version, samsung note, Huawei Smartphone

Sunday, August 10, 2014

Extended Kalman Filter (EKF) MATLAB Implimentation

Extended Kalman Filter (EKF) MATLAB Implimentation - technology is getting more advanced every day .. if you want to know the progress that happened please visit this blog Technology News because it will always update the latest information, now we will discuss first about Extended Kalman Filter (EKF) MATLAB Implimentation hopefully this information can answer the questions you submit to google, ok please see:

Articles : Extended Kalman Filter (EKF) MATLAB Implimentation
full Link : Extended Kalman Filter (EKF) MATLAB Implimentation

You can also see our article on:


    Extended Kalman Filter (EKF) MATLAB Implimentation

    Kalman Filter (KF) 

    Linear dynamical system (Linear evolution functions)





    Extended Kalman Filter (EKF) 

    Non-linear dynamical system (Non-linear evolution functions)


    Consider the following non-linear system:



    Assume that we can somehow determine a reference trajectory 
    Then:


    where

    For the measurement equation, we have:

    We can then apply the standard Kalman filter to the linearized model
    How to choose the reference trajectory?
    Idea of the extended Kalman filter is to re-linearize the model around the most recent state estimate, i.e.



    The Extended Kalman Filter (EKF) has become a standard    technique used in a number of 
    # nonlinear estimation and 
    # machine learning applications
    #State estimation
    #estimating the state of a nonlinear dynamic system
    #Parameter estimation
    #estimating parameters for nonlinear system identification
    #e.g., learning the weights of a neural network
    #dual estimation 
    #both states and parameters are estimated simultaneously
    #e.g., the Expectation Maximization (EM) algorithm

    MATLAB CODE
    ########################################################################
    function [x_next,P_next,x_dgr,P_dgr] = ekf(f,Q,h,y,R,del_f,del_h,x_hat,P_hat);
    % Extended Kalman filter
    %
    % -------------------------------------------------------------------------
    %
    % State space model is
    % X_k+1 = f_k(X_k) + V_k+1   -->  state update
    % Y_k = h_k(X_k) + W_k       -->  measurement
    %
    % V_k+1 zero mean uncorrelated gaussian, cov(V_k) = Q_k
    % W_k zero mean uncorrelated gaussian, cov(W_k) = R_k
    % V_k & W_j are uncorrelated for every k,j
    %
    % -------------------------------------------------------------------------
    %
    % Inputs:
    % f = f_k
    % Q = Q_k+1
    % h = h_k
    % y = y_k
    % R = R_k
    % del_f = gradient of f_k
    % del_h = gradient of h_k
    % x_hat = current state prediction
    % P_hat = current error covariance (predicted)
    %
    % -------------------------------------------------------------------------
    %
    % Outputs:
    % x_next = next state prediction
    % P_next = next error covariance (predicted)
    % x_dgr = current state estimate
    % P_dgr = current estimated error covariance
    %
    % -------------------------------------------------------------------------
    %

    if isa(f,'function_handle') & isa(h,'function_handle') & isa(del_f,'function_handle') & isa(del_h,'function_handle')
        y_hat = h(x_hat);
        y_tilde = y - y_hat;
        t = del_h(x_hat);
        tmp = P_hat*t;
        M = inv(t'*tmp+R+eps);
        K = tmp*M;
        p = del_f(x_hat);
        x_dgr = x_hat + K* y_tilde;
        x_next = f(x_dgr);
        P_dgr = P_hat - tmp*K';
        P_next = p* P_dgr* p' + Q;
    else
        error('f, h, del_f, and del_h should be function handles')
        return
    end

    ##############################################################################


    For more

    https://drive.google.com/folderview?id=0B2l8IvcdrC4oMzU3Z2NVXzQ0Y28&usp=sharing



    information about Extended Kalman Filter (EKF) MATLAB Implimentation has been completed in the discussion

    hopefully information Extended Kalman Filter (EKF) MATLAB Implimentation can benefit you in getting the latest information about technology,

    you just read the article entitled Extended Kalman Filter (EKF) MATLAB Implimentation if the article feel useful for you please bookmark or share by using link https://micromyaw.blogspot.com/2014/08/extended-kalman-filter-ekf-matlab.html and thank you.

    Tag :
    Share on Facebook
    Share on Twitter
    Share on Google+
    Tags :

    Related : Extended Kalman Filter (EKF) MATLAB Implimentation

      0 comments:

      Post a Comment