Technology News, Micromax, Mobiles Flashing Software, Flash Tool, Pokemon GO Apk, Income Online, Moto G4 Plus, Sony PC, Latest Version, samsung note, Huawei Smartphone

Saturday, July 6, 2013

Path Delay Calculation in Wireless Sensor Networks using Matlab

Path Delay Calculation in Wireless Sensor Networks using Matlab - technology is getting more advanced every day .. if you want to know the progress that happened please visit this blog Technology News because it will always update the latest information, now we will discuss first about Path Delay Calculation in Wireless Sensor Networks using Matlab hopefully this information can answer the questions you submit to google, ok please see:

Articles : Path Delay Calculation in Wireless Sensor Networks using Matlab
full Link : Path Delay Calculation in Wireless Sensor Networks using Matlab

You can also see our article on:


Path Delay Calculation in Wireless Sensor Networks using Matlab


Delay Measurement Time Synchronization 

For Wireless Sensor Networks 



A synchronized network time is essential for energy efficient scheduling, data fusion, localization and many other wireless sensor networks (WSN) applications. This paper studies the special issue of time synchronization in tiny sensor networking devices and presents a Delay Measurement Time Synchronization (DMTS) technique applicable for both single hop and multi-hop wireless sensor networks. DMTS is flexible and lightweight. For a single hop WSN of n nodes, it takes only one time broadcast to synchronize the network regardless the  value of n. As aresult it adds minimum network traffic and is energy efficient, because radio communication is a significant source of energy-consumption in a WSN. For a multi-hop WSN of n nodes, DMTS requires n time message exchanges in total in order to synchronize the whole network. 
DMTS is implemented in Berkeley motes within Tiny OS framework. It is a service available 
to TinyOS applications. Our test results show that DMTS achieves a time synchronization 
accuracy of 1 clock tick in single-hop WSNs. For a 2 hop WSN, the average time 
synchronization error is approximately 1.5 clock ticks. 
DMTS scheme is currently used in several applications running on Berkeley motes to provide 

network timestamps and global scheduling





Algorithm


1. deploy uniform random node distribution
i. unknown positions of sensor nodes
(for GSP or RSP strategy)
(or)
ii. known positions of sensor nodes
(for ISP, GASP or MonteCarlo strategy)
calculate candidate locations
2. iteration:
i. place sensor nodes
ii. place sink strategy
iii. connect all nodes
iv. check connectivity of network
v. choose the nearest sink
vi. calculate the maximum delay
3. repeat 2 according to the sink placement strategy
4. select the locations with minimum worst-case delay


######################################################################



A = [   0 5.518 0 0 0 8.276 13.794 0 0 0 0 0 0 0;

        4.622 0 4.622 0 0 0 13.865 0 0 0 0 0 0 0;
        0 1.241 0 3.724 0 0 7.448 0 0 0 0 0 0 0;
        0 0 1.442 0 2.883 0 5.766 0 4.325 0 0 0 0 0;
        0 0 0 3.068 0 1.524 6.136 4.602 0 0 0 0 0 0;
        1.616 0 0 0 4.848 0 9.696 0 0 0 0 0 0 0;
        6.350 6.350 6.350 6.350 6.350 6.350 2.540 0 0 0 0 0 0 22.859;
        0 0 0 0 1.260 0 0 0 2.520 0 0 0 3.779 5.039;
        0 0 0 1.274 0 0 0 2.549 0 3.823 0 0 0 5.097;
        0 0 0 0 0 0 0 0 1.646 0 2.469 0 0 1.646;
        0 0 0 0 0 0 0 0 0 1.877 0 2.503 0 1.252;
        0 0 0 0 0 0 0 0 0 0 2.390 0 1.792 1.195;
        0 0 0 0 0 0 0 1.195 0 0 0 1.793 0 4.780;
        0 0 0 0 0 0 4.252 4.252 4.252 6.378 7.654 7.654 6.378 1.701;
    ];
L = [];
U = [];
S = [20 20 30 30 30 30  60 30 30 20 20 20 20 60];
for i = 1:14
    s=0;
    u=0;
    k=0;
    for j = 1:14
        s = s + A(j,i);
        if(A(i,j)~=0)
            u = u + S(j);
        end
    end
    L = [L,s];
    U = [U,u];
end
E = [];
for i = 1:14
    s = L(i)/(U(i)-L(i));
    E = [E,s];
end
P = [];
n = input('No. of nodes in path : ');
for i = 1:n
    k = input('Node : ');
    P = [P,k];
end
delay = 0;
for i = 1:n
    delay = delay + E(P(i));
end

#####################################################################



information about Path Delay Calculation in Wireless Sensor Networks using Matlab has been completed in the discussion

hopefully information Path Delay Calculation in Wireless Sensor Networks using Matlab can benefit you in getting the latest information about technology,

you just read the article entitled Path Delay Calculation in Wireless Sensor Networks using Matlab if the article feel useful for you please bookmark or share by using link https://micromyaw.blogspot.com/2013/07/path-delay-calculation-in-wireless.html and thank you.

Tag :
Share on Facebook
Share on Twitter
Share on Google+
Tags :

Related : Path Delay Calculation in Wireless Sensor Networks using Matlab

0 comments:

Post a Comment